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ABSTRACT 
In recent years, dynamic pricing studies which depend on price-based revenue management 
have increased significantly due to the devolopments in predictive modeling softwares. 
Accordingly, studies dealing with the prediction of demand functions and price optimizations 
have also increased. In this research, a new methodology which could be used in retailing is 
suggested. In this context, support vector machine which depends on statistical learning and 
poisson regression which deals with count data is used separately  in a comparative manner. 
In the result of comparisons, using the demand functions of the better forecasting model 
which has the lowest forecasting errors among them, price based revenue functions are 
generated. After this, in the case of unlimited capacity, taking the derivative of these 
previously obtained price based revenue functions or alternatively by using unconstrained 
nonlinear programming, optimal sales prices which maximized the relevant revenue functions 
are determined. In the case of limited capacity, price based revenue functions are rearranged 
according to the relation between price and demand and  these rearranged revenue functions 
are proposed to be the objective function of nonlinear programming model given in this study. 
Adding capacity constraints to the model, similarly, optimal dynamic price policy which  
maximized revenue function of the retailer are constructed  for the limited capacity 
conditions.  
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ÖZET 
Son yıllarda, tahmine dayalı yazılımların gelişmesi ile birlikte, fiyat tabanlı gelir yönetimi ile 
ilgili dinamik fiyatlandırma çalışmaları giderek yaygınlaşmaktadır. Bu gelişmelerin bir 
yansıması olarak talep fonksiyonlarının tahmini ve fiyat optimizasyonu çalışmaları da önem 
kazanmıştır. Bu çalışmada, perakendecilik sektöründe kullanılabilecek yeni bir metodoloji 
önerilmiştir. Bu bağlamda, istatistiksel öğrenmeye dayanan destek vektör makinesi ve sayma 
verisi için önerilen poisson regresyonu karşılaştırmalı olarak kullanılmıştır. Karşılaştırma 
sonucunda, talebi daha düşük hata ile tahmin eden talep fonksiyonları kullanılarak, fiyata 
dayalı gelir fonksiyonları elde edilmiştir. Ardından, kapasitenin sınırsız olması  durumunda, 
kısıtsız doğrusal olmayan programlama ile gelir fonksiyonlarını en büyükleyen optimal fiyat 
noktaları bulunmuştur. Kısıtlı kapasite ösz konusu ise, fiyata dayalı gelir fonksiyonları talep-
fiyat ilişkisine göre talebe göre ifade edilmiş ve doğrusal olmayan programlama modelinin 
amaç fonksiyonunu oluşturmuştur. Modele mevcut kapasite kısıtları da eklenerek, benzer 
şekilde, kısıtlı kapasite için perakendecinin gelir fonksiyonunu en büyükleyen optimal 
dinamik fiyat politikası oluşturulmuştur. 
 
Anahtar Kelimeler: Gelir Yönetimi, Dinamik Fiyatlandırma, Destek Vektör Makinesi, 
Doğrusal Olmayan Programlama, Optimizasyon, Poisson Regresyon. 
 

1. INTRODUCTION 
When a revenue management application is executed, it must be ensured that optimal sales 
prices which maximize revenue should be obtained. So, “Revenue Management” concept 
which has emerged in recent years has been dealing with finding out optimal prices in order to 
maximize revenue.  
 
Changing price throughout managing revenue is called as “ dynamic pricing”. In this context, 
it requires difficult and comprehensive analysis to decide how often and how much the price 
must be changed. In general, the problem is defined as finding out optimal dynamic prices to 
maximize expected revenue in a limited planning horizon with a fixed amount of inventory on 
hand.(Monohan et al., 2002)  
 
By the way, dynamic pricing applications have been performing well when the capacity is 
immediately perishable, sale period is short and the relevant demand is price sensitive. All 
these properties can be seen in retailers dealing with marketing seasonal goods.  
 
Looking at revenue management applications, most of the studies constitute the pricing of 
airline flight tickets and the pricing of hotel rooms. Whereas; the studies in retailing in 
literature are much less with respect to other industries.    



E 
Eurasian Business & Economics Journal                                                 2017, Volume: 8 

 

 

13 

 
 
In this study different from previous studies, demand functions obtained by support vector 
machine and poisson regression have been compared for prediction accuracy. Since the data 
used in the study have the property of count data, the efficiency of support vector machine 
and poisson regression for such count data has been investigated as another aim. In the result 
of analysis, using the demand functions which have belonged to the better forecasting model, 
price based revenue functions have been obtained. After this, in the case of unlimited 
capacity, taking the derivative of these previously obtained price based revenue functions or 
alternatively using unconstrained nonlinear programming, optimal sales prices have been 
gathered which have maximized the relevant revenue functions.  
 
On the other hand, when the capacity constraints are included in the problem, the previously 
obtained price based revenue functions are reformulated according to the demand. This 
reformulation has been performed using the relation between price and demand. Then, these 
reformulated revenue functions have been appointed as the objective function of the nonlinear 
programming model and capacity constraints have been taken into consideration. So, in case 
of limited capacity, optimal dynamic sales maximizing the revenue have been discovered.  
 
The remainder of this paper organized as follows. A literature review concerning the subject 
is provided in section 2. Procedures of the methodology and the models used in the 
methodology are explained in section 3. A real case study with numerical results generated 
using the proposed method and comparisons are given in section 4. Finally, the concluding 
remarks are presented in section 5.  
 
2. LITERATURE REVIEW 
The most significant studies dealing with revenue management and dynamic pricing in 
retailing literature are summarized as follows. 
 
Badinelli and Olsen (1990) illustrated that when it was required to make a price decison, it 
should not be forgotton that today’s price would affect the future price. 
 
Gallego and Van Ryzin (1994) suggested that fixed price policy was optimal as the sales 
volume tended to be infinite.  
 
Bitran and Wadhwa (1996) defined the seasonal good pricing problem as finding out the 
dynamic optimal pricing policy of a retail good with a fixed amount of inventory and limited 
sales horizon. In the relevant study, authors suggested some assumptions about the structure 
of the problem and analyzed it according to these assumptions.  
 
Chatwin (2000) studied a problem in which there were limited number of goods to be sold 
before a certain time point and the retailer had to price in order to get the maximum revenue. 
In his study, the retailer also had to make the price decions through a given allowed price 
options.  
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Lippman (2003) explained that retailing revenue management applications were able to offer 
optimal price solutions which change in the course of time with respect to a retailer’s goals.  
 
Elmaghraby and Keskinocak (2003) offered a literature survey and certain studies about 
dynamic pricing.  
 
Gabriel Bitran and Rene Caltendey (2003) investigated a problem in which customers were 
price sensitive and the retailer had to sell its inventory before a deadline. In the relevant study, 
the aim of the retailer is to find an optimal price strategy which would sell its inventory with 
the maximum revenue. 
 
Hawtin (2003) clarified that the business rules should be taken into consideration and 
managed well when using revenue management principles in retailing. In his study, it has 
been suggested that the prices obtained from a revenue management should not be in conflict 
with the company’s image. Otherwise, it would result in not only losing potential sales but 
also losing customers forever.  
 
Lin (2004) studied a problem in which a seller had a limited inventory on-hand and had to 
decide the optimal price strategy to obtain maximum revenue. In the context of the problem,  
some assumptions about the customer demand were made and the problem was analyzed 
according to these assumptions.  
 
Ziya, Ayhan and Foley (2004) analyzed the three most well-known assumptions in the 
revenue management literature. These assumptions were decreasing marginal revenue with 
respect to demand, decreasing marginal revenue with respect to price and increasing price 
sensitivity of demand. 
 
Kuyumcu (2007) explained that revenue management dealt with too many disciplines such as 
operations research, mathematics, statistics, marketing and finance. By the way, it was 
indicated that the best way to increase a firm’s revenue could be achieved by using right 
prices at the right time. For this goal, the accuracy of demand prediction models should be 
analyzed. For example, it was illustrared in the study that demand functions depending on 
regression should be analyzed by statistical performance measures such as correlation 
coefficient.  
 
Shields and Shelleman (2009) emphasized that revenue management applications were made 
up of four basic parts. These were defined as obtaining customer demand data, analyzing 
demand data, balancing demand and supply and deciding optimal prices to maximize revenue. 
By the way, a control list which would guide managers were suggested.  
 
Farias and Van Roy (2010), studied a problem in which a seller had a limited given number of 
inventory on-hand and had to decide the best price strategy to obtain maximum revenue. In 
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the context of the problem, the authors did not utilize the past demand data. Instead of this, 
according to assumptions on customer arrivals and customer buyer behavior, optimal prices 
were tried to be found out.  
 
Zhao, Tian and Li (2012) studied a dynamic pricing problem based on consumer behavior. In 
the scope of the problem, they tried to figure out how consumption inactivity and slowdown 
in consumer buying behavior affected on dynamic pricing strategy and optimal prices. The 
results of the study proposed the slowdown in consumer buying behavior has negatively 
affected on expected revenues of the business and optimal dynamic pricing policy. 
 
Zhou and Li (2014) focused the consumer strategy behavior effect on retailers pricing 
mechanism. Under the condition of uncertainty demand and deterministic demand, they found 
that strategy behavior of consumers influenced price and profit. By introducing a discount 
factor, considering inventory timely complement and fixed inventory in two cases, they 
obtained purchase decision and dynamic pricing startegies of consumers.   
 
Levin, Nediak and Bazhanov (2014) considered a dynamic pricing problem for a monopolistic 
company selling a perishable product when customer demand has been both uncertain and 
occured in batches that must be fulfilled as a whole. The seller can price-discriminate between 
different sized batches by setting different unit prices. The problem was modeled as a 
stochastic optimal control problem to find an inventory-contingent dynamic pricing policy 
that maximized expected total revenues. They found the properties of optimal pricing policy 
and proved several monotonicity results. 
 
3. METHODOLOGY 
As mentioned above the methodology proposed in this study has two parts. The first part is to 
forecast demand functions and the second part is to generate the price based revenue 
functions. The second part is investigated under the two different conditions such as unlimited 
and limited capacity to reach optimal sales prices and dynamic sales prices respectively for 
maximizing the revenue functions. Function blocks of  the proposed methodology is given in 
Figure 1. 
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Figure 1: Function blocks of the suggested methodolgy 
 
In the following subtitles, detailed information has been given about the models of the 
methodology used in the context of this study. 
 
3.1 Support Vector Machine 
 
Support vector machine is a supervised learning procedure which analyze data and learn from 
data. It is used in classifying and regression analysis. Support vector machine was suggested 
firstly by Vladimir Vapnik and his co-workers in 1992 at Computational Learning Theory 
Conference. It has reached its last shape which is used now in 1995 by Corinna Cortes and 
Vladimir Vapnik. In 1997, support vector machine algorithm were expanded to include the 
regression applications by again Vapnik and his colleagues. Since then, it has been using 
increasingly by the improvements in computer technology in the last decade.  
 
Although the first studies in support vector machine were about classifying, in latter studies, 
very satisfying results were obtained about predicting time series and regression applications. 
General information about regression application of support vector regression is as follows. 
 
For a learning set like D = {(x1, y1), (x2, y2), …, (xl, yl)}  
 
Here, xi is the value of an input variable inside N-dimensional input variables and yi is the 
value of an output variable; 
 
f(x) = xw,  + b  function is tried to be found out. Here, w is called as “normal vector” and x 

is called as “input vector”. This is a vectoral multiplication of two vectors with the equal 
dimensions. 
 

Comparing poisson regression 
model and support vector 
machine model and identifying 
the model which performs better  

Obtaining price based revenue functions 
by using the demand functions belongs to 
the better forecasting model 

Finding out optimal sales prices by taking the 
derivative of the price based revenue 
functions or alternatively using 
unconstrained nonlinear programming 
 

Reformulating price based revenue 
functions according to demand, adding 
capacity constraints and finding out 
optimal sales prices by non-linear 

 

If there is no 
capacity constraint 

If there is a capacity 
constraint 
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The basic goal in support vector regression is to find such a function of f(x) that the real yi 

output values are predicted with at most ε  deviation. If it is not the case to find such an f 
function with ε  error for all data points, then a constant is used to determine the trade off 
between the flatness of f and the amount up to which deviations larger than ε  are tolerated. 
So, only the deviations larger thanε are penalized. Figure 2 depicts the situation graphically.  
    
 

 
 
 
Figure 2: Situation of predicting with larger than ε  error  

(Smola and Schölkopf,  2004) 
 
   As it can be seen in Figure 3 below, the f(x) function should predict the real ouput data with 
ε  error or less.  

 
Figure 3: Predicting real output data with ±ε  error  
(Smola and Schölkopf,  2004) 

 
   In order to find such a function of f(x); a minimum w vector is looked for. So, the norm of 
w vector is minimized. The problem can be written as convex optimization as follows:  

2

2
1min w                                         (1) 

Constraints : ε≤−− bxwy ii ,                                     (2) 

ε≤−+ ii ybxw,                                    (3) 

However, a feasible solution withε  error in the extent of the above constraints might not be 
found. To overcome this problem, iξ  and *

iξ  free variables have been added to the model. 
(Smola and Schölkopf, 2004) 
  
   According to this,  the problem is reformulated as follows: 
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i
iCw ξξ ++ ∑

=

                                    (4) 

Constraints : iii bxwy ξε +≤−− ,                       (5) 
*, iii ybxw ξε +≤−+                           (6) 

iξ , 0* ≥iξ                         (7) 
Let C is a constant coefficient which is larger than 0 and helps to compromise with deviations 
larger than ε  and the model complexity. The reason to use support vector machine is to 
specify how this model performs in the prediction of demand and obtain the relevant demand 
function.  
 
3.2 Poisson Regression 
Poisson regression model is also known as log-lineer regression. Poisson regression depends 
on exponential distribution. By the way, it has been widely used since it does not require the 
normal distribution assumptions. (Frome et al., 1973) 
 
Poisson regression analysis explain the relation between independent variables and a 
dependent variable which is based on count data. Count data is defined as the occuring 
number of a particular event in a certain time period. So, count data is a discrete number such 
as 0, 1, 2, or 3. For such data, side effects in a medical treatment or number of demand in a 
certain period are good examples. First studies in count data modelling were seen in actuarial 
sciences, biostatistics and demography. Then, it has taken much consideration in 
econometrics and has been especially used in microeconomics.  
 
In poisson regression models, the relation function which relates the linear structure of 
independent variables to the dependent variable’s expected value is executed by logarithm 
(Frome, 1983) 
 
As Y denoting dependent variable, Xi denoting independent variables and Ci denoting 
coefficients of independent variables; relation function is as follows: 
log e(Y) = C0 + C1 * X1 + C2 * X2 + …+CN * XN                     (8) 
 So, 

NN XCXCXCCeY *...** 22110 ++++=                                                       (9) 
 Similarly,  

NN XCXCXCC eeeeY *** *...*** 22110=                           (10) 
 
The reason to use poisson regression is to specify how this model performs in the prediction 
of demand and obtain the relevant demand function.  
 
The most significant property of poisson distribuition is that it assumes that the mean and 
variance are equal. If mean is less than variance, it is called as overdispersion. In such 
situations, it is suggested to use regression analysis which involves dispersion parameter in 
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order to explain extra-poisson condition. The relevant regression analysis are negative 
binomial regression and mixed poisson regression analysis. In this study, overdispersion tests 
have been executed in SAS and since no overdispersion sitiuation has been encountered, 
poisson regression has been approved.  
 
3.3 Non-linear Programming 
Nonlinear programming is the process of solving a system of equalities and inequalities, 
collectively termed constraints, over a set of unknown real variables, along with an objective 
function to be maximized or minimized, where some of the constraints or the objective 
function are nonlinear. 
 
For a maximization problem, if the objective function is concave and solution space bounded 
with constraints is convex, convex optimization models can be used. Similarly, for a 
minimization problem, if the objective function is convex and solution space bounded with 
constraints is convex, convex optimization models can be used.  
 
In this study, nonlinear programming is used to analyze demand based revenue functions in 
constrained capacity conditions in order to find out optimal dynamic sales prices.   
 
In the following, constants and variables used in the nonlinear programming model is defined.  
 
T = Sales season 
t = Periods of sales season (from 1 to T) 
dt = Demand corresponding to optimal price (pt)  
pt = optimal price for each period 
rt (dt) = Revenue function based on demand at each period  
Jt (dt) = Derivative of revenue function at each period (marginal revenue) 
λ = Lagrange multiplier 
C = On hand inventory at the beginning of the sales season  
 
  Regarding the constants and variables above, the goal function and constraints of 
nonlinear programming model is given below.  

 )(
1

t

T

t
t drMax∑

=

  Sum of total revenues should be maximized and concave                            (11) 

∀ Jt (dt) =  λ   Marginal revenues for each period should be equal to lagrange multiplier   (12)  
                                                                                          

Cd
T

t
t ≤∑

=1

  Total demand may not exceed on hand inventory at the beginning of the season             

                                                                                                                         (13) 

0)(
1

=−∑
=

T

t
tdCλ   If there is excess inventory at the end of the season, lagrange multiplier should 

be equal to zero. This is called complementary slackness.                                                  (14)
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∀ dt  ≥  0            Positivity constraint                                                     (15) 
 λ ≥  0         Lagrange constraint                                                                          (16) 
  
3.4. Mathematical Model for Suggested Methodology 
Mathematical model for suggested methodology is as follows.  
 
T = Sales season  
i = Function index 
t = Sales period 
dti = demand function i at period t 
pti = price for function i at period t 
Eti = Forecast error for function i at period t 
AEt = Advertising expense at period t 
dti (pti) = Fti price based demand fuction for function i at period t  
Rti (pti) = price based revenue function for function i at period t 
a,b,c,d,e = arbitrary constants 
exp = 2,718 (euler number) 
 
Unlimited capacity condition 
 
1) Finding price based demand functions at each period 
For AEt = e, dti (pti)= Fti      (Ft1= a x exppt1+b   ,  Ft2= c x pt2 + d)                       (17)      
 
2) Finding price based revenue functions at each period  
Rti (pti) = Fti x pti                                                                                                                                                                     (18)     
                                    
                                                                                                                                                            
3) Obtaining price based revenue functions using the least error demand functions and finding 
optimal prices.   

 Max Rti(pti) = 
∑
=

T

t 1 [Fti(min Eti) x pti ]                        (19)
                                                                
From the equation above, optimal prices are computed.  
 
Limited capacity  condition 
1) Price based revenue functions are defined based on demand  
dti (pti) = price based demand function for function i at period t 
pti (dti) = demand based price function for function i at period t 
pti (dti) = Gti  (Gt1=1/a [b-ln (dt1)] ,   Gt2=(c-dt2)/d )                        
 (20) 
Rti (dti) = Gti x dti                                                                                                                (21) 
Jti (dti) = derivative of demand based revenue function i at period t  
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2) Defining price based revenue functions as the goal function using the least error demand 
functions  

Max Rti(dti)= ∑
=

T

t 1
[Gti(min Eti) x dti ]                                                

 (22) 
3) Adding capacity constraints, complementary slackness and positivity constraints into 
nonlinear  programming model 

Cd
T

t
ti ≤∑

=1
                                                                                                                 (23) 

∀ Jti (dti) = λ                                                                                   (24) 

0)(
1

=−∑
=

T

t
tidCλ                                                                                               (25) 

∀ dti  ≥  0                                                                                   (26) 
λ ≥  0                               (27) 
4) Using optimal (dti) finding out optimal prices 
pti (dti) = Gti  (using inverse function, optimal prices are found) 
5) Revising optimal price strategy if actual demand is different than forecasted demand when 
optimal price strategy is applied  
Cj = on hand inventory at period j  
T-j = Time to remain until the end of the sales season 

Max Rti(dti)= [Gti(min Eti) x dti ]                                               

  (28) 

j

T

jt
ti Cd ≤∑

=

                                                                                                         (29) 

 
∀ Jti (dti) = λ                                                                                    (30) 

0)( =−∑
=

T

jt
tij dCλ

                             (31) 
∀ dti  ≥  0                              (32) 
 λ ≥  0                                   (33) 
pti (dti) = Gti  (using inverse function, optimal prices are found) 
 
6) Selling more than expected and replenishing inventory  
ζ = replenishment amount at period j  

Max Rti(dti)= ∑
=

T

jt
[Gti(min Eti) x dti ]                        

  (34) 

ζ+≤∑
=

j

T

jt
ti Cd                           (35) 

∀ Jti (dti) = λ                           (36) 
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0)( =−+ ∑
=

T

jt
tij dC ζλ                  (37) 

∀ dti  ≥  0                  (38) 
 λ ≥  0                               (39) 
pti (dti) = Gti  (using inverse function, optimal prices are found) 
 
4. APPLICATION AND ANALYSIS 
 
In the scope of application, different type of two seasonal goods sold by a business have been 
taken into consideration and monthly past price, monthly advertising expense and monthly 
sales data have been gathered for each of the goods. By the way, the monthly advertising 
expense the firm will make the next year is already known. In order to make right and 
consistent calculations with the obtained monthly data belonging to the past years, all the data 
has been reformulated according to CPI (consumer price index) rates. So, monetary values 
have been purified from inflation effects. After this, it has been approved to predict demand 
using poisson regression and support vector machine.  
 
For the comparison of the forecasting accuracy of support vector machine and poisson 
regression model, relative root mean squared error (RRMSE) of the models have been used. 
By the way, for the better forecasting model, it has also been investigated whether a 
forecasting bias exists or not. Using RRMSE, the model which predicts demand better has 
been identified among support vector machine and poisson regression model. Then, it has 
been demonstrated using tracking signal that the models predicting better do not have 
forecasting bias. So the demand functions of these better predicting models have been used in 
non-linear programming and optimal dynamic sales prices have been found out. 
 
To obtain the demand functions for support vector machine, Weka 3.6.3 machine learning 
software has been used. Besides that, in order to introduce data to Weka software, csv 
(comma seperated value) format has been used. A critical issue in the computation process of 
support vector machine is that the normalization of the data should not be applied. This must 
be ensured in order to compare poisson regression and support vector machine in a significant 
and meaningful way. To obtain the demand functions for poisson regression, Eviews 7 
software has been used. Similarly to introduce data to Eviews 7 software, csv (comma 
seperated value) format has been used.  
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Table 1: Poisson regression overdispersion criteria obtained from SAS 

As it can be seen from the above Table 1, since overdispersion criteria values are not larger 
than 1, there is no overdispersion being identified. If these values were larger than 1, then 
overdispersion would exist.    Table 2 and Table 3 below provides RRMSE values for both 
support vector machine and poisson regression. 

    RRMSE Demand Function 

Product 
1 

Period 1 

Support Vector 
Machine 

4,87% -0,3894 x Price + 0,0737 x Advertising 
Expense - 82,3188 

Poisson Regression 4,48% e2,030909 - 0,015110 x Price + 0,001393 x Advertising 

Expense 

Period 2 

Support Vector 
Machine 7,16% 

-0,6665 x Price + 0,0286 x Advertising 
Expense + 28,6666 

Poisson Regression 7,15% e3,572218 - 0,023363 x Price + 0,000908 x Advertising 

Expense 

Period 3 

Support Vector 
Machine 10,92% -0,4049 x Price + 0,0757 x Advertising 

Expense - 100,3129 

Poisson Regression 9,58% 
e2,178101 - 0,031788 x Price + 0,001752 x Advertising 

Expense 
Table 2: RRMSE values which belong to support vector machine and poisson regression for 
Product 1  

    RRMSE Demand Function 

Product 
2 

Period 1 

Support Vector 
Machine 

4,56% -0,2126 x Price + 0,0757 x Advertising 
Expense - 94,9189 

Poisson Regression 3,75% e0,916714 - 0,010304 x Price + 0,001915 x Advertising 

Expense 

Period 2 

Support Vector 
Machine 6,13% 

-0,797 x Price + 0,0329 x Advertising 
Expense + 64,1159 

Poisson Regression 7,18% e8,178779 - 0,039923 x Price + 0,000183 x Advertising 

Expense 

Period 3 
Support Vector 
Machine 11,92% -0,5625 x Price + 0,0667 x Advertising 

Expense - 45,0879 
Poisson Regression 13,32% e2,994172 - 0,05348 x Price + 0,0034 x Advertising Expense 

Table 3: RRMSE values which belong to support vector machine and poisson regression for 
Product 2  
 
As it can be seen from Table 2 and Table 3, according to RRMSE values for each product, the 
forecasting accuracy of the forecasting models indicated bold are better than others in the 
relevant period (month). Another issue different from forecasting accuracy is the forecasting 
bias. To measure the forecasting bias of a forecasting model, tracking signal is used. Tracking 
signal is found simply by dividing cumulative error to the mean absolute error. The tracking 
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signal which measures forecasting bias actually computes how often a forecasting model 
forecasts over actual demand or under actual demand.    
    
High positive tracking signals mean that the forecasting model is consistently inclined to 
forecast under actual demand which is also called as “under-forecasting bias”. On the other 
hand, high negative tracking signals mean that the forecasting model is consistently inclined 
to forecast over actual demand which is also called as “over-forecasting bias”. Thereby, high 
negative and positive tracking signal values indicate that the forecasting model is out of 
control such as in the quality control charts. So, in order to check whether a forecasting bias 
exists or not, ± 4  tracking signal value is used which corresponds to 3 standard deviation. As 
a result, forecasting accuracy and forecasting bias are different subjects and should be taken in 
hand seperately. For example, a forecasting model which is good at forecasting accuracy by 
RRMSE, may have poor results in terms of forecasting bias if it is evaluated by tracking 
signal.    
 
In the scope of the explanations above, for each product the forecasting models which forecast 
demand better by RRMSE have been analyzed by tracking signal in terms of forecasting bias. 
In  Figure 4 below, the tracking signal relevant to poisson regression for product 1 in period 1 
is shown. In Figure 5 below, the tracking signal relevant to poisson regression for product 1 in 
period 2 is shown. In  Figure 6 below, the tracking signal relevant to poisson regression for 
product 1 in period 3 is shown. In  Figure 7 below, the tracking signal relevant to poisson 
regression for product 2 in period 1 is shown. In  Figure 8 below, the tracking signal relevant 
to support vector machine for product 2 in period 2 is shown. In Figure 9 below, the tracking 
signal relevant to support vector machine for product 2 in period 3 is shown.  
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Figure 4: Tracking signal relevant to poisson regression for product 1 in period 1 
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Figure 5: Tracking signal relevant to poisson regression for product 1 in period 2 
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Figure 6: Tracking signal relevant to poisson regression for product 1 in period 3 
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Figure 7: Tracking signal relevant to poisson regression for product 2 in period 1 
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Figure 8: Tracking signal relevant to poisson regression for product 2 in period 1 
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Figure 9: Tracking signal relevant to support vector machine for product 2 in period 3 
 
As it can be seen from the figures above for both products, the forecasting models which 
forecast demand better are also convenient in terms of forecasting bias when evaluated by 
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tracking signal since the ± 4 control limits are not violated. So, the demand functions of these 
forecasting models have been used in further analysis.  
 
Since the montly advertising expense for the next year is 2000  Turkish Liras (TRY), the 
demand functions of the forecasting models which forecast demand better have been used and 
the following price based demand functions have been obtained.  
Price Based Demand Functions For Product 1  
d1 = e2,030909 - 0,015110 x Price + 0,001393 x 2000 = e4,816909 - 0,015110 x Price            (40) 
d2 = e3,572218 - 0,023363 x Price + 0,000908 x 2000 = e5,388218 - 0,023363 x Price                       (41) 
d3 = e2,178101 - 0,031788 x Price + 0,001752 x 2000 = e5,682101 - 0,031788 x Price                       (42) 
 
Price Based Demand Functions For Product 2  
d1 = e 0,916714 - 0,010304 x Price + 0,001915 x 2000 = e 4,746714 - 0,010304 x Price                        (43) 
d2 = -0,797 x Price + 0,0329 x 2000 + 64,1159 = -0,797 x Price + 129,9159                  (44) 
d3  = -0,5625 x Price + 0,0667 x 2000 – 45,0879 = - 0,5625 x Price + 88,3121               (45) 

 
In the next step, multiplying the price based revenue functions in the above by price, the 
following price based revenue functions have been obtained.   
 
Price Based Revenue Functions For Product 1  
e4,816909 - 0,015110 x Price x Price                   (46) 
e5,388218 - 0,023363 x Price x Price                               (47) 
e5,682101 - 0,031788 x Price x Price                              (48) 
 
Price Based Revenue Functions For Product 2  
e 4,746714 - 0,010304 x Price  x Price                            (49) 
- 0,797 x Price2 + 129,9159 x Price                                     (50) 
- 0,5625 x Price2 + 88,3121 x Price                           (51) 
 
4.1 Computing The Optimal Dynamic Pricing Strategy for Unlimited Capacity 
Constraint Condition 
In the above, nonlinear price based revenue functions have been obtained between (46) and 
(51). Since there is no capacity constraint assumed, optimal dynamic prices below in table 4 
have been obtained by applying derivatives to these price based revenue functions. In table 4, 
the corresponding integer demand and revenue values have also been shown.   
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Optimal 
Price Demand Revenue 

Cumulative 
Revenue 

Product 1 
Period 1 66,18 45 2978 2978 
Period 2 42,80 80 3424 6402 
Period 3 31,50 107 3371 9773 

Product 2 
Period 1 97,04 42 4075 4075 
Period 2 81,50 65 5297 9372 
Period 3 78,50 44 3454 12826 

Table 4: Optimal dynamic prices, expected demand and revenue for product 1 and product 2 
in no capacity constraint condition 
 
No capacity constraint has been taken into consideration while computing the optimal 
dynamic prices, demand and expected revenue above.  Figure 10 and figure 11 below 
illustrate optimal dynamic pricing strategy and corresponding revenue for product 1 and 
product 2 in no capacity constraint condition.   
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Figure 10: Optimal dynamic pricing strategy and corresponding revenues for product 1 in no 
capacity constraint condition. 
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Figure 11: Optimal dynamic pricing strategy and corresponding revenues for product 2 in no 
capacity constraint condition 
 
4.2 Computing The Optimal Dynamic Pricing Strategy for Limited Capacity Constraint 
Conditions 
Another critical issue for the problem is the optimal price strategy change if capacity 
constraints are involved in the problem.  
 
For example if the capacity is limited with 120 units for the product 2, then the optimal price 
strategy differs from the findings in the previous section. In this case, price based revenue 
functions between (49) and (51) have to be reformulated according to demand using the 
equations between (43) and (45).  
 
Demand based revenue functions for product 2          
Using equation (43), d1 = e 4,746714 - 0,010304 x Price  , then,   
Price = 1/0,010304 x [4,746714-ln (d1)]  is obtained, and,                                               (52)                                                                     
 
Revenue1 = d1/0,010304 x [4,746714-ln (d1)]   is found.                        (53) 
Using equation (44), d2 = -0,797 x Price + 129,9159,    then,    
              
Price = (129,9159-d2) / 0,797  is obtained, and,                         (54) 
Revenue2 = (129,9159 x d2 – d22) / 0,797  is found.                         (55)                          
Using equation (45), d3 = - 0,5625 x Price + 88,3121, then, 
Price = (88,3121-d3) / 0,5625  is obtained, and,                                                                (56)                        
Revenue3 = (88,3121 x d3-d32) / 0,5625  is found.                          (57) 
So, demand based revenue functions in (52), (54) and (56) for product 2 have been obtained 
by using the demand functions of the forecasting models which forecast better. These demand 
based revenue functions have been used as the objective function in the nonlinear 
programming model below.  
 
List of Variables Used  for The Non-linear Programming Model 
d1 = Demand corresponding to the optimal price used in period 1 
d2 = Demand corresponding to the optimal price used in period 2 
d3 = Demand corresponding to the optimal price used in period 3 
λ  = Lagrange Multiplier 
C = Capacity Constraint  (120) 
 
Objective Function 
Max    d1 /0,010304 x [4,746714-ln(d1)] + (129,9159 x d2 – d22) / 0,797 + (88,3121 x d3-
d32)/ 0,5625                                                                                                                     (58) 
Constraints 

3,746714 / 0,010304 – ln (d1) / 0,010304 = λ                       (59) 
  -2 d2 /0,797 + 163,006       = λ                                  (60) 
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 -2 d3 /0,5625 + 156,999       = λ                                  (61) 
 d1 + d2 + d3                        ≤ 120                                  (62) 
 λ x 120 – λ x d1 – λ x d2 – λ x d3     = 0                                  (63) 
 d1             ≥ 0                                   (64) 

d2              ≥ 0                                   (65) 
 d3             ≥ 0                                  (66) 

λ               ≥ 0                                  (67) 
 
   In the nonlinear programming model for product 2, equation (58) is the objective function. 
    
Equations (59), (60) and (61) are marginal revenues and each one is the derivative of the 
revenue functions in the objective function. 
 

For example,the derivative of  [ ])ln(746714,4*
010304,0 1

1 d
d

−   is computed as in (59) by 

   
)(

)))ln(746714,4(*010304,0/(

1

11

d
dd

∂
−∂ =3,746714 / 0,010304 - ln (d1) / 0,010304  

 
Equation (62) indicates the limited capacity.  
Equation (63) is called as complementary slackness. This means that if the limited capacity is 
not fully utilized, then the lagrange multipier must equal 0.  
Equation (64), (65), (66) and (67) represent the positivity condition in the nonlinear 
programming model. To solve the nonlinear programming model, Lingo 12 software has been 
used. Figure 12 below shows the nonlinear programming model used in Lingo 12 in the 
limited capacity condition. 

 
 

Figure 12: Nonlinear programming model formulated by Lingo 12 
 
In Figure 12, @log (d) function means ln(d) and it is the natural logarithm in base e. Besides, 
@SQR (d) function means the square of d. Solving the model above, demand in periods have 
is computed as follows:  
d1 = 31, d2 = 53 and d3 = 36. So, using equations (43), (44) and (45), optimal dynamic prices 
have been found out as follows:  

 
Using equation (43), d1 = e 4,746714 - 0,010304 x Price = 31  
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4,746714 – 0,010304 x Price = ln (31) = 3,433987                                   
               
Price = 127,39  is obtained.  

 
Using equation (44), d2 = -0,797 x Price + 129,9159 = 53                                               
Price = 96,50 is obtained by logarithm. 
 
Using equation (45), d3 = - 0,5625 x Price + 88,3121 = 36                                             
Price = 93  is obtained by logarithm. 
 
The corresponding revenue for the above price strategy is calculated as 12412 TRY. By the 
way, it has been observed that as the capacity for product 2 diminishes, optimal sales prices 
are in a tendency to rise. Figure 13 below shows the optimal dynamic pricing strategy in no 
capacity constraint condition and the optimal dynamic pricing strategy in 120 units of limited 
capacity condition for product 2.  
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Figure 13: The optimal dynamic pricing strategy in no capacity constraint condition and the 
optimal dynamic pricing strategy in 120 units of limited capacity condition for product 2 
 
4.3 Revising The Optimal Dynamic Pricing Strategy When Actual and Expected Sales 
Differ 
In this case, using the suggested optimal price strategy, actual sales could be lower than the 
expected sales or alternatively actual sales could be higher than the expected sales. If actual 
sales are higher than the expected sales, the firm might not replenish inventory or might 
replenish inventory if possible. 
 
4.3.1 Selling Less Than Expected Sales 
Applying the optimal price strategy for product 2, after the first period, the on hand inventory 
at beginning of the second period should be 89 (120-31). However, if the company sells 20 
units, the on hand inventory is 100 (120-20). So, the remaining price strategies until the end of 
the season changes.  Lingo 12 model for this calculation given in Figure 14.    
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Figure 14: The optimal dynamic pricing strategy for the remaining two periods for product 2 
when actual sales are lower than expected sales 
 
The optimal solution for the above model is d2=60 and d3=40. Using price based demand 
function for product 2, d2 = -0,797 x Price + 129,9159 (44) and d3  = - 0,5625 x Price + 
88,3121 (45), p2=87,72 and p3=85,88 are found. So, the original optimal prices of 96,50 and 
93 for period 2 and period 3 have decreased.  
 
4.3.2 Selling More Than Expected Sales 
Applying the optimal price strategy for product 2, after the first period, the on hand inventory 
at beginning of the second period should be 89 (120-31). However, if the company sells 50 
units, the on hand inventory is 70 (120-50). In this case, the firm might not replenish 
inventory or might replenish inventory if possible. 
 

a) Selling More Than Expected and No Replenishment 
 Lingo model for this case is given in Figure 15.  
 

 
Figure 15: The optimal dynamic pricing strategy for the remaining two periods for product 2 
when actual sales are more than expected sales and no replenishment 
 
The optimal solution for the above model is d2=42 and d3=28. Using d2 = -0,797 x Price + 
129,9159 (44) and d3  = - 0,5625 x Price + 88,3121 (45), p2=110,31 and p3=107,22 are found. 
So, the original optimal prices of 96,50 and 93 for period 2 and period 3 have increased. By 
the way, the revenue function value equals to 7635.  
   

b) Selling More Than Expected and Inventory Is Replenished  
If ζ is the deviation between actual sales and expected sales at the first period, and if the firm 
is able to replenish inventory by ζ,, then ζ  is 19 (50-31) and the following model which is 
given in Figure 16 can be performed.  
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     Figure 16: The optimal dynamic pricing strategy for the remaining two periods for 
product 2 when actual sales are more than expected sales and inventory is replenished 
 
The optimal solution for the above model is d2=53 and d3=36. Using d2 = -0,797 x Price + 
129,9159 (44) and d3  = - 0,5625 x Price + 88,3121 (45), p2=96,50 and p3=93 are found. By 
the way, the revenue function value equals to 8463 which is 828 more than 7635. So, we can 
conclude that the firm had better replenish inventory if possible to gain more revenue if it 
sells more than expected.    
 
5. RESULTS AND DISCUSSIONS 
In a dynamic pricing application, a firm with a limited capacity tries to answer the question of 
which prices to use in time is necessary in order to get the maximum revenue. Making this 
decision, probably the most critical issue is to find out how demand occurs.  So, in this study, 
firstly it has been tried to find out by which forecasting model the relevant demand could be 
expressed well. For this reason, RRMSE measures of the forecasting models have been 
compared.  By this way, the forecasting model which forecast better have been selected. Since 
the data used in the study is count data, appropriate forecasting model has been tried to select 
among poisson regression and support vector machine models. In most cases, poisson 
regression has given better results than support vector machine. So, it can be suggested that 
researchers should heavily depend on classical count data models in cases which the number 
of data is small. However, the researchers might still take advantage of other models by 
comparing count models with others fitting count data.  
 
According to the findings, for unlimited capacity condition, it has been found that the optimal 
sales prices should fall as the the selling period comes to an end.  It has been also found that 
the rate of the decreases in the sales price should change from time to time. For example, the 
first decrease in price for product 2 has been computed as 16 % whereas the second decrease 
has just been computed as 3,7 % . Another point observed has been that the decrease in 
optimal prices should change from product to product. For example, the first decrease in 
product 1 has been computed as 35,3 % while 16 % in product 2.  
 
Another important point is that any policy different from the optimal dynamic policy will 
always bring less revenue than the optimal one. For example, the revenue of any other pricing 
policy for product 2 would be less than 12826 TRY. In addition to the findings above, limited 
capacity condition has also been analyzed by nonlinear programming model and new optimal 
dynamic prices for this condition have been found. The results have indicated that optimal 
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prices should fall as the season comes to end. It has also been discovered that the decreases in 
price might change from period to period. For example, the first decrease in price for product 
2 in 120 units of limited capacity has been computed as 24 % whereas the second decrease 
has just been computed as 3,6 % . 
 
In the study, the difference between the optimal dynamic pricing strategies of unlimited  and 
limited capacity conditions has been compared too. As a result, optimal prices for limited 
capacity condition have been found higher than unlimited capacity condition. For example, 
optimal dynamic prices for product 2 in 120 units of limited capacity condition have been 
found 127,39, 96,50 and 93 TRY respectively. On the other hand, in unlimited capacity 
condition, optimal prices for product 2 have been computed as 97,04, 81,50 and 78,50 TRY 
respectively.  
 
By the way, according to the findings, the revenue obtained in unlimited capacity condition 
has been found higher than the revenue in limited capacity condition. For example, the 
revenue for product 2 in unlimited capacity condition has been found as 12826 TRY. 
Whereas, it has been computed as 12412 TRY in 120 units of  limited capacity  condition.  
 
The findings above is based on the data used in the study. However, using different data and 
the same procedure, one may get naturally a different pricing policy such as first a falldown 
and then a steady price afterwards but the proposed methodology remains the same. In 
conclusion, the solution and optimization approach described and implemented in this paper 
can be extended to other and similar real world-pricing decisions in retailing.   
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	1. INTRODUCTION
	When a revenue management application is executed, it must be ensured that optimal sales prices which maximize revenue should be obtained. So, “Revenue Management” concept which has emerged in recent years has been dealing with finding out optimal pri...

